যোগাশ্রয়ী প্রোগ্রামে সমস্যা গঠন

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ২য় পত্র | | NCTB BOOK
2

**যোগাশ্রয়ী প্রোগ্রামে সমস্যা গঠন (Formulating Problems in Linear Programming)**

যোগাশ্রয়ী প্রোগ্রামে একটি সমস্যা গঠন করতে হলে, সমস্যাটিকে একটি গাণিতিক মডেলে রূপান্তর করতে হয়। সমস্যার গঠন প্রক্রিয়ার প্রধান ধাপগুলো নিম্নরূপ:

---

1. **লক্ষ্য নির্ধারণ (Objective Function)**  
  - সমস্যার লক্ষ্য কী তা নির্ধারণ করা হয়। এটি সাধারণত একটি পরিমাণ যা সর্বাধিক (maximize) বা সর্বনিম্ন (minimize) করতে হবে। যেমন, মুনাফা সর্বাধিক করা বা খরচ কমিয়ে আনা। লক্ষ্য নির্ধারণ ফাংশন সাধারণত একটি লিনিয়ার সমীকরণের মাধ্যমে প্রকাশ করা হয়।
  
2. **সীমাবদ্ধতা (Constraints)**  
  - সমস্যার সমাধানে কিছু শর্ত বা সীমাবদ্ধতা থাকতে পারে যা মানা প্রয়োজন। এসব সীমাবদ্ধতা লিনিয়ার ইনইক্যুয়ালিটির মাধ্যমে প্রকাশ করা হয়। যেমন, কাঁচামালের পরিমাণ, সময় বা বাজেটের সীমাবদ্ধতা।
  
3. **প্রয়োজনীয় ভেরিয়েবল (Decision Variables)**  
  - সমস্যায় যে উপাদানগুলো পরিবর্তিত হতে পারে, তাদের ভেরিয়েবল হিসেবে নির্ধারণ করা হয়। এই ভেরিয়েবলগুলোর মান নির্ধারণের মাধ্যমে লক্ষ্য অর্জন এবং সীমাবদ্ধতা পূরণ করতে হয়। প্রতিটি ভেরিয়েবল সমস্যার মধ্যে থাকা উপাদান বা পরিমাণকে উপস্থাপন করে।
  
4. **সম্ভাব্যতা ক্ষেত্র (Feasible Region)**  
  - সীমাবদ্ধতাগুলো পূরণ করে যে মানগুলো লক্ষ্য পূরণ করতে সহায়ক হয়, সেগুলোকে সম্ভাব্যতা ক্ষেত্র বলে। এটি মূলত সেই মানগুলোর সমষ্টি যা লক্ষ্য ফাংশনকে নির্ধারিত সীমার মধ্যে রাখে। গ্রাফিক্যাল পদ্ধতিতে এটি চিত্রিত করা হয়।

5. **সমাধান এবং বিশ্লেষণ**  
  - সমস্যাটি সঠিকভাবে গঠন করার পর, গ্রাফিক্যাল পদ্ধতি বা কোনো বিশেষ অ্যালগরিদম ব্যবহার করে লক্ষ্য ফাংশনের জন্য সর্বাধিক বা সর্বনিম্ন মান নির্ধারণ করা হয়। এই মানগুলো হলো সমস্যার চূড়ান্ত সমাধান যা নির্ধারিত সীমাবদ্ধতার মধ্যে সবচেয়ে উপযুক্ত বলে বিবেচিত হয়।

---

**উদাহরণ:**

ধরা যাক, একটি কোম্পানি দুটি প্রোডাক্ট তৈরি করে: প্রোডাক্ট A এবং প্রোডাক্ট B। কোম্পানির লক্ষ্য হলো মোট মুনাফা সর্বাধিক করা, যেখানে প্রতিটি প্রোডাক্ট তৈরিতে কাঁচামালের একটি সীমাবদ্ধতা আছে। এই সমস্যাটি গঠন করতে হবে:

- **লক্ষ্য ফাংশন**: মোট মুনাফা সর্বাধিক করা।
- **সীমাবদ্ধতা**: কাঁচামালের পরিমাণ ও সময়।
- **প্রয়োজনীয় ভেরিয়েবল**: প্রোডাক্ট A এবং প্রোডাক্ট B এর সংখ্যা।

---

এই ধাপগুলো অনুসরণ করে যোগাশ্রয়ী প্রোগ্রামের যেকোনো সমস্যার গাণিতিক গঠন সহজে করা যায়, যা সমস্যার সমাধানে সহায়ক হয়।

Content added || updated By
Promotion